Applied Technotopia

We scan the digital environment to examine the leading trends in emerging technology today to know more about future.

We have added a few indices around the site. Though we look to the future, we need to keep an eye on the present as well:

Recent Tweets @leerobinsonp

More on the problem of space junk.


ESA’s Clean Space targets orbital debris and greener environment

Next year’s Hollywood film Gravity features George Clooney stranded in orbit by cascading space junk. The threat is genuine, with debris levels rising steadily. ESA’s new Clean Space initiative is developing methods of preserving near-Earth space – and the terrestrial environment, too.

Responding to public environmental concerns, Clean Space aims to reduce the environmental effect of Europe’s space activities, cutting waste and pollution on Earth and in orbit.

Industry is contributing to ESA’s draft plans for developing Clean Space technologies: new tools to assess environmental effects, more eco-friendly replacements for materials and techniques, and ways to halt the production of more space debris and bring down existing debris levels.

ESA Director General Jean-Jacques Dordain emphasises that implementing Clean Space is a major objective of Agenda 2015, the Agency’s upcoming action plan: “If we are convinced that space infrastructure will become more and more essential, then we must transmit the space environment to future generations as we found it, that is, pristine.”

“We can therefore say that Clean Space is not a new programme, but instead a new way of designing all of ESA’s programmes. I would like ESA to become a model agency in this respect.

“We will not succeed alone; we will need everyone’s help. The entire space sector has to be with us.”

ESTEC, ESA’s technical centre in Noordwijk, the Netherlands, hosted a Clean Space workshop in June, jointly organised by ESA and industry body Eurospace.

On Earth, Clean Space involves evaluating the environmental impact of future space projects, as well as monitoring the likely effects of forthcoming legislation on the space industry – environmental law being an extremely fast-moving field.

Life-cycle assessment will be important for evaluating the environmental effects of space technologies, from their initial design and manufacture to their end-of-life.

In the workshop, Environmental consultancy BIO Intelligence Services described the current wide employment of life-cycle assessment in other industrial sectors.

Environmental friendliness often goes hand-in-hand with increased efficiency – offering industry competitive advantage.

Novel manufacturing processes such as ‘additive manufacturing’, where structures are built up in layers, or ‘friction stir welding’, where lower weld temperatures use less materials and energy to do a better job.

Reducing the need for often costly waste disposal is another win–win: rocket maker Safran is working on a biological method of breaking down toxic solid-propellant waste.

In Gravity, runaway orbital collisions fill low-Earth orbit with a lethal debris cloud.

In real life, of the 6000 satellites launched during the Space Age, less than 1000 remain operational. The rest are derelict and prone to fragment as leftover fuel or batteries explode.

Orbiting at 7.5 km/s or more, even a 2 cm screw has sufficient ‘lethal diameter’ to take out a satellite.

The workshop discussed various means of minimising future debris production, such as tethers or sails to help drag abandoned satellites out of low orbit within 25 years.

Satellite reentry also needs to be a safer process – sometimes entire chunks of satellites have hit the ground intact. New ‘design for demise’ concepts aim to prevent that.

But even if all space launches stop tomorrow, simulations show that debris levels will keep growing. Active removal is also needed, including robotic missions to repair or deorbit satellites.

IMAGE….70% of all catalogued objects are in low-Earth orbit (LEO), which extends to 2000 km above the Earth’s surface. To observe the Earth, spacecraft must orbit at such a low altitude. The spatial density of objects increases at high latitudes.
Note: The debris field shown in the image is an artist’s impression based on actual data. However, the debris objects are shown at an exaggerated size to make them visible at the scale shown.

Credits: ESA

  1. whyfrolic reblogged this from eatgeekstudy
  2. thatsthatfunk reblogged this from decadentscience
  3. hau-are-you-doing reblogged this from paradoxicalparadigms
  4. paradoxicalparadigms reblogged this from tardissr
  5. takethatthomas reblogged this from tardissr
  6. pushanpan reblogged this from logicianmagician and added:
    GOOD GOD, I feel like wall-e :(
  7. egalitarianscum reblogged this from tardissr
  8. tardissr reblogged this from futurist-foresight
  9. eatgeekstudy reblogged this from decadentscience
  10. alexcarreno reblogged this from futurist-foresight
  11. decadentscience reblogged this from logicianmagician
  12. lollllsummer69 reblogged this from logicianmagician
  13. logicianmagician reblogged this from futurist-foresight
  14. dupont533 reblogged this from futurist-foresight
  15. out-onthetiles reblogged this from futurist-foresight
  16. get--in--the--boat reblogged this from understandingtheuniverse
  17. understandingtheuniverse reblogged this from starstuffblog
  18. ninjagero reblogged this from futurist-foresight
  19. itisathingnow reblogged this from futurist-foresight
  20. kyokutannataikutsu reblogged this from futurist-foresight
  21. futurist-foresight reblogged this from starstuffblog and added:
    More on the problem of space junk.
  22. starstuffblog posted this